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Peculiarities of first-order phase transitions in the presence of an electric field
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In this study, we developed a variational approach for thermodynamic systems with nondistributed param-
eters in the presence of the external electrostatic field. Using the obtained general relations, we analyzed some
characteristic features of the first-order phase transitions in the presence of electric field. We determined the
range of the thermodynamic parameters where both phases are stable~hysteresis!, and the range of the param-
eters whereby both phases are metastable. In the range where both phases are metastable, we considered
kinetics of formation of a new phase and determined the dependencies of the concentrations of phases in the
region of their metastability on the amplitude of the external electric field. The obtained results imply the
feasibility to control phase composition in the system by varying the amplitude of the external electrostatic
field.
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I. INTRODUCTION

Effect of the external electric field upon the dynamics
phase transitions and chemical reactions is of interest b
from a purely theoretical point of view and in view of var
ous technological applications~see, e.g., Ref.@1#, and refer-
ences therein!. In contrast to a field theory@2#, the electro-
dynamics of continuous media is a system
phenomenological approaches@3–5#. In spite of the variety
of approaches suggested in the literature, the approach b
upon the variational principal is one of the most consiste
In Ref. @6#, we employed this approach for the analysis of t
first-order phase transitions in the presence of electric fi
which are accompanied by formation of the nuclei with d
creasing sizes. In this study, we generalized this approac
account for the dependence of the system response to
external electric field upon the entropy of the system.

Another problem, which is considered in this investig
tion, is kinetics of phase formation in the domain where b
phases are metastable. Although the existence of this dom
was established before~see Refs.@7,8#!, variation of concen-
trations of phases with time was not addressed before. S
tion of the latter problem allowed us to determine the dep
dence of the equilibrium concentration of phases upon
amplitude of the external electric field. Thus, we demo
strated the feasibility to change concentrations of phase
the system by varying the amplitude of the external elec
field.

This paper is organized as follows. In Sec. II, we d
scribed a variational approach for the description of therm
dynamic system with nondistributed parameters. In Sec
using the general relations obtained in Sec. II, we analy
some characteristic features of the first-order phase tra
tions in the presence of electric field. Here, we determin
the range of temperatures and pressures whereby both p
are metastable, considered the kinetics of formation of a n
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phase in this range of temperatures and pressures, and d
mined the dependencies of concentrations of phases in
region of their simultaneous metastability on the amplitu
of the applied electric field.

II. CONDITIONS FOR PHASE EQUILIBRIUM
IN THE PRESENCE OF EXTERNAL FIELD

Consider a system consisting ofK components which are
characterized by a set of parameters$Ni ,v i ,si%, whereNi is
a number of particles,v i is a specific volume, andsi is a
specific entropy per one particle. The equation of state of
i th component reads« i5« i

0(v i ,si), where« i is the energy of
a componenti per one particle. Energy associated with
external loading per unit volume is denoted by«̄L . In the
framework of a thermodynamic approach, energy of the s
tem in the presence of the external loading can be written
follows:

E5(
i 51

K

Ni@« i
0~v i ,si !1v i «̄L„$v i%,$si%,$l%…#, ~1!

where$l% is a set of parameters that characterize the exte
loading.

Let us assume that the energy of the system is minim
at a given magnitude of the total entropy

S5(
i 51

K

siNi .

The latter requirement is equivalent to the minimization o
function F5E2TS. The multiplierT is determined from a
given total entropy and it is equal to the temperature of
system. A condition for extremum

]F

]si
U

N1 ,v i ,sj Þ i

50 ~2!

yields a system ofK equations
©2003 The American Physical Society01-1
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NiF S ]« i
0

]si
1v i

]«̄L

]si
D 2TG50, i 51, . . . ,K. ~3!

Since Ni in Eq. ~3! is arbitrary, the expression in squa
brackets must vanish. Thus, one arrives atK equations that
determine the values of entropiessi as functions of param
eters$v i%,T,$l%.

Because of the principle of additivity, i.e., assumption th
energy associated with the external loading appears a
additional term in the expression for the total energyE ~see,
e.g., Ref.@3#!, the exact solution of Eq.~3! exceeds the ther
modynamic accuracy. Indeed, letsi5si(v,T,«̄L) be the exact
solution of Eq.~3!. Sincesi depends on«̄L nonlinearly, a
function F„$v i%,T,«̄L… is also a nonlinear function with re
spect to the external loading. In order to preserve an add
ity principle in all thermodynamic representations, it is ne
essary to neglect nonlinear terms with respect to the exte
loading. However, in order to simplify notations, hereaf
we use a general expression while the nonlinear terms
respect to the external loading are neglected only in the fi
formulas.

Equation ~3! is solved by iterations with respect to th
external loading«̄L . Let si

0(v,T) be an equation of state fo
the entropy of thei th component, andsi5si

0(v i ,T) is a so-
lution of Eq. ~3! for «̄L50. After substituting this value o
si5si

0(v i ,T) into the term associated with the external loa
ing, Eq. ~3! yields

T~si ,s i !1Ti
L5T, ~4!

where Ti
L5v i ]«̄L /]si usi5s

i
0(v i ,T) and T(si ,v i) is a state

function,T(si ,v i)5]« i
0(si ,v i)/]si . Thus, ifsi5si

0(v i ,T) is
a solution of Eq.~3! for «̄L50, then a new solution of Eqs
~3! and ~4! can be written as follows:

si
15si

0~v i ,T2Ti
L!. ~5!

Only the first term in the expansion of formula~5! in power
series of parameterTi

L has a physical meaning in the fram
work of thermodynamic accuracy:

si
15si

0~v i ,T!2
ci

T
Ti

L , ~6!

whereci /T5]si
0/]T. Note that Eq.~4! describes the elec

trocalorific effect~see, e.g., Ref.@3#!, Chap. 2, Sec. 12!. Sub-
stituting the valuessi

1 given by Eq.~5! into expression for
the functionF5E2TS yields

F5(
i 51

K

Ni@« i
0
„v i ,si

0~v i ,T2Ti
L!…1v i «̄L„v i ,si

0~v i ,T!,$l%…

2Tsi
0~v i ,T2Ti

L!#.

Since in the final formulas we retain only the first iterati
with respect to the external loading, in the second term of
latter expression we substituted as an argumentsi

5si
0(v i ,T).
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In the framework of thermodynamic accuracy, this e
pression can be rewritten as

F5(
i 51

K

Ni@ f i
0~v i ,T2Ti

L!1 f i
L#. ~7!

Here, f i
0(v i ,T) is a free energy of an unloaded system p

one particle:

f i
0~v i ,T̃!5« i

0
„si~v i ,T̃!,T̃…2T̃si

0~v i ,T̃!, T̃5T2Ti
L ,

~8!

and

f i
L~v i ,T!5v i «̄L2Ti

Lsi
0~v i ,T!. ~9!

Equation~7! describes the effect of renormalization of tem
perature in the presence of electric field. The effective te
perature of a subsystem~componenti! differs from the tem-
perature of the thermostat. This effect is similar to the eff
described in Ref.@3# whereby a thermodynamic pressure in
subsystem in the presence of the external loading~e.g., elec-
tric field! is different from the external pressure.

Let us require now that the total energy of the system
minimum for a given volume of the systemV5( i 51

K v iNi .
The latter requirement can be written using a functionF
5F1pV, where p is a Lagrange multiplier. A condition
]F/]V50 yields a system ofK equations

NiF S ] f i
0

]v i
1

] f i
L

]v i
D 1pG50. ~10!

Equation~10! can be considered as a condition for mecha
cal equilibrium between the subsystems, while Eq.~3! is a
condition for thermal equilibrium. Using Eqs.~7! and~8!, we
find that

] f i
0

]v i
52p~v i ,T2Ti

L!1
] f i

0

]Ti
L

]Ti
L

]v i
, ~11!

] f i
L

]v i
5 «̄L1v i

]«̄L

]v i
2Ti

L
]si

0

]v i
2si

0
]Ti

L

]v i
, ~12!

wherep(v i ,T̃) is an equation of state of thei th component.
Now we employ the same procedure as was used for tra
tion from energyE to functionF. Assume thatv i5v i

0(p,T)
is a solution of Eq.~10! for «̄L[0, and solve Eq.~10! by
iterations, i.e., substitutev i

0(p,T) into all terms containing
«̄L and its derivatives@see Eqs.~11! and ~12!#.

Then, if v i5v i
0(p,T) is a solution of Eq.~10! for «̄L

[0, the new solution of Eq.~10! v i
1 can be written as

v i
15v i

0~p2pi
L ,T2Ti

L!, ~13!

wherepi
L52(] f 0 /]Ti

L ]Ti
L/]v i1] f i

L/]v i)uv i5v0(p,T) .
Substituting the equilibrium value~13! into function F

and keeping only terms with the thermodynamic accura
yield
1-2
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F5(
i 51

K

Ni@ f i
0~v i

1,T2Ti
L!1v i

0«̄L2Ti
Lsi

0~v i
0,T!1pv i

1#.

Introducing the chemical potential

m i~p,T̃!5 f i
0
„v i~p,T̃!,T̃…1pv i~p,T̃!, ~14!

we can rewrite formula forF as follows:

F5(
i 51

K

Ni@m i
0~p2pi

L ,T2Ti
L!1m i

L#, ~15!

wherem i
L5 f i

L1pi
Lv i

0(p,T).
Finally, a condition for chemical equilibrium is dete

mined from the requirement for the minimum of a functio

A5F2m(
i 51

K

Ni

with respect to parametersNi :

m i
0~p2pi

L ,T2Ti
L!1m i

L5mk
0~p2pk

L ,T2Tk
L!1mk

L .
~16!

Expanding Eq.~16! in power series of the parameters of t
external loading, we find that

m i
0~p,T!2mk

0~p,T!5v i pi
L2vkpk

L1mk
L2m i

L2siTi
L1skTk

L ,

~17!

wherev i(p,T) andsi(p,T) are specific volume and entrop
per one particle, respectively.

III. PHASE TRANSITION IN THE PRESENCE
OF THE EXTERNAL ELECTRIC FIELD

Using the approach outlined in the preceding section, c
sider a first-order phase transition in the presence of the
ternal electric field. Although this problem was a subject
many experimental and theoretical studies~see, e.g., Refs
@1,9,10#!, some aspects of the problem were not analy
before in spite of their significance for elucidating the pro
lem. The principal effect of the electric field upon the firs
order phase transition is the splitting of the phase equilibri
curve whereby the equilibrium curves for the direct and
the inverse phase transitions do not coincide. The latter e
occurs because a work of formation of a nucleus of a n
phase depends upon the electrodynamic parameters o
nucleus and of the host medium. In the following, we den
parameters of a nucleus by the subscript 0 and paramete
the host medium by the subscript 1. Energy of the sys
comprised an embedded nucleus and a host medium in
external electric field can be written in the form given by E
~1!. To this end, we determine the change of the energy
the electric field~see Ref.@3#, Chap. 2, Sec. 11!:

We5E ~EW •DW 2EW 0•DW 0!drW,
02610
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whereEW 0 ,DW 0 andEW ,DW are the strengths of the electric fie
and induction before and after formation of the nucleus,
spectively. In the case of a spherical nucleus, we arrive at
following formula for We ~see, e.g., Ref.@3#, Chap. 2, Sec.
12 and Ref.@9#!:

We5 «̄ fv1N1 ,

where

«̄ f5
b02b1

8p

3b0E0
2

b112b0
. ~18!

Here,b0 andb1 are dielectric permittivities of the externa
~host! and internal~nucleus! phases, respectively, which re
late electric induction with the strength of electric field,DW

5bEW . The value«̄L in Eq. ~1! can be written as«̄L5 «̄ f .
Let us neglect the dependence of the dielectric permitt

ties b0 and b1 upon the entropies and specific volumes
the external and internal phases. According to Eq.~4! Ti

L

50, and according to Eq.~9! f i
L5v i «̄ f . Using Eqs.~12! and

~13!, we find thatpi
L52 «̄ fd i l , wheredmn is a Kronecker’s

delta. Thus,

m i
L5 f i

L1pi
Lv i50. ~19!

In order to determine the size of a critical nucleus, we m
take into account the surface tension. The equation for de
mining the radius of a critical nucleusr 1 can be derived
using Eqs.~17! and ~19! and taking into account that th
radius of a critical nucleus is an additional variational para
eter in the problem@12#:

m1
0~p,T!2m0

0~p,T!52v1S «̄ f1
2a

r 1
D , ~20!

wherea is a coefficient of surface tension.
Formulas~19! and ~20! were often used in the literatur

~see, e.g., Refs.@7–10#! for the analysis of the phase trans
tions. Equations~18! and ~19! show that the main effect o
the electric field on phase transitions is related to that« f
changes sign depending on the magnitude of the dielec
permittivity of the internal phase. The similar situation o
curs in the case of phase transitions in current-carrying c
ductors. In Refs.@10,11# using equations of the same type
Eqs. ~18!–~20!, we demonstrated the existence of the th
modynamic domain where both phases are metastable
this domain for a given value of pressure, there exists a t
perature intervalDT(p) where the sizes of the critica
nucleus for the direct and inverse phase transitions ass
positive values simultaneously. A case of electrostatic field
associated with some differences. The latter is the reason
in this study, we performed a complete analysis of the pr
lem. Apart from the temperature rangeDT(p) where for a
given pressure both phases are metastable, we also co
ered the rangeDp(T) of pressures where for a given tem
perature both phases are metastable. If the difference
tween the specific volumes of both phases is small, the la
1-3
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YU. DOLINSKY AND T. ELPERIN PHYSICAL REVIEW E68, 026101 ~2003!
range can be quite largeDp(T)@ «̄ f . In conclusion, we con-
sidered also kinetics of phase transition in the domain
coexistence of both phases.

Further analysis is performed using Eq.~20! in order to
determine the size of the critical nucleusr 2 for a phase
transition 1→2 and r 1 for a phase transition2→1.
Hereafter, the subscripts1 and2 denote a high temperatur
and a low temperature phase, respectively. Using Eq.~20! in
the vicinity of temperatureT5T0(p) for a given pressurep,
we find that for a phase transition1→2 ~phase2 is con-
sidered to be the internal phase!

r 2~T!52
2av2

0

l0

DT

T0
1v2

0 «̄ f̄

, DT5T2T0 , ~21!

wherev2
0 is a specific volume of a low temperature phase

the phase equilibrium curveT5T0(p), l05T0(s1
0 2s2

0 )
.0, s1

0 ands2
0 are specific entropies of the high temperatu

and low temperature phases, respectively, and

«̄ f
25b1

12k

8p

3

k12
E0

2, k5
b2

b1
. ~22!

Consider now a phase transition2→1, assuming that
phase1 is the internal phase. In this case,

r 1~T!5
2av1

0

l0

DT

T0
2v1

0 «̄ f
1

, ~23!

wherev1
0 is a specific volume of the high temperature pha

and

«̄ f
15b1

k21

8p

3k

112k
E0

2. ~24!

Formula~21! allows us to determine a temperatureT2 such
that at temperaturesT.T2 , the nuclei of the low tempera
ture phase~2! are not formed,

T22T0

T0
52

v2«̄ f
2

l0
, ~25!

while formula~23! allows us to determine a temperatureT1

such that at temperaturesT,T1 , nuclei of the high tempera
ture phase~1! are not formed,

T12T0

T0
5

v1«̄ f
1

l0
. ~26!

Define a parameter

g5
T22T0

T12T0
5

112k

~k12!k

v2

v1
.0. ~27!

Equation~27! implies that the curvesT2(p) andT1(p) are
shifted in the same direction with respect to the curveT0(p)
since the differencesT22T0 and T12T0 have the same
02610
f

t

e

sign. As follows from Eqs.~21!–~24!, whenk.1 the curves
T2(p) and T1(p) are shifted towards higher temperature
and whenk,1 these curves are shifted towards lower te
peratures. IfT2(p),T1(p), then in the temperature range

T2~p!,T,T1~p!, ~28!

the nuclei of the new phase are not formed. The latter c
clusion is a direct consequence of the definition ofT2(p)
and T1(p). In the temperatures range determined by E
~28!, both phases are stable, i.e., it is a range of a hyster

Different situation occurs whenT1(p),T2(p). In this
case, in the temperature range

T1~p!,T,T2~p!, ~29!

both phases are metastable, so thatr 1(T) andr 2(T) assume
finite positive values. The latter conclusion can be verified
follows. Eliminating DT/T0 in formulas ~21! and ~23!, we
find that

2av1

r 1
1

2av2

r 2
52v2« f

2
g21

g
5v1«̄ f

1~g21!. ~30!

In the domain where both phases are metastable,r 1(T)
and r 2(T) assume positive and finite values. Equation~30!
implies that such a situation can occur only when its rig
hand side is positive. Since fork.1, «̄ f

2,0 and«̄ f
1.0, Eq.

~30! yields a condition for the metastability of both phases
the rangek.1, g.1.

Similarly, it can be showed that in the rangek,1, the
condition for the metastability of both phases isg,1 with
the only difference thatT2,T0 andT1,T0 . In Figs. 1 and
2, we showed locations of different domains of stability
phases fork.1 andk,1 on the temperature axis. In Fig. 3
we showed locations of the domains of metastability of b
phases onv2 /v1 ,b2 /b1 plane.

Above we considered different thermodynamic regions
the temperature axis for a given magnitude of pressure.
ing a similar approach, we can analyze different thermo
namic regions at the pressure axis for a given magnitud
temperature. Thus, we obtained formulas for pressuresp2

FIG. 1. Locations of domains of stability and metastability
phases for different values of parameterg (k.1).
1-4
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PECULIARITIES OF FIRST-ORDER PHASE . . . PHYSICAL REVIEW E 68, 026101 ~2003!
and p1 , such that forp.p2 a low pressure phase is no
formed and forp,p1 a high pressure phase is not forme

p22p052
«̄ f

2

D2
, p12p05

«̄ f
1

D1
,

where «̄ f
2 is determined by Eq.~22!, D25v22v1 /v2 ,

D15v22v1 /v1 , «̄ f
1 is determined by Eq.~24!, v2 and

v1 are specific volumes of low pressure and high press
phases, respectively. Then, using considerations simila
those employed in the analysis of the temperatures range
arrive at the thermodynamic domains of stability of pha
shown in Figs. 1 and 2.

In conclusion, we consider kinetics of formation of tw
phases. Denote byx1 and x2 the concentrations of a hig
temperature and a low temperature phase, respectively
neglect fluctuations of concentrations and consider a lin
domain where concentrations of both phases are far f
depletion. Letp1 andp2 be the probabilities of formation o
phases~see Ref.@13#, Chap. 12, Sec. 99!. Since x11x2

51 using the local approximation, we find that

ẋ15p1~12x1!2p2x1 ,

or

FIG. 2. Locations of domains of stability and metastability
phases for different values of parameterg (k,1).

FIG. 3. Domains of metastability of both phases onv2 /v1 ,
b2 /b1 plane.
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x1~ t !5
w

11w
1exp~2gt !S x1~0!2

w

11w D , w5
p1

p2
,

x2~ t !5
1

11w
1exp~2gt !S x2~0!2

1

11w D .

In the linear region where both phases are far from deplet
the probability of phase formation is determined by the cr
cal radius ~see Ref. @13#, Chap. 12, Sec. 99!, p6

}exp(24par6
2 /3kT), and

w5expF2
4pa~r 1

2 2r 2
2 !

3kT G . ~31!

Here, r 1 and r 2 are the critical sizes of the nuclei in th
domain of coexistence of phases which were determi
above. Substituting these values into formula~31! yields the
dependencies of phase concentrationsx1 and x2 upon the
amplitude of the external electric field. Direct substitution
Eqs. ~21!–~24! into Eq. ~31! yields an expression which i
too cumbersome for the direct analysis. In order to der
simple formulas for the dependencies of phase concen
tions on the amplitude of the electric field, let us define t
parameter

Ee
25

DT

T0

l0

Ṽ~k!
, ~32!

where Ṽ(k)5v2v1 /(v11v2)•(k21)/8pb13(k214k
11)/(k12)/(112k).

When the external electric fieldE05Ee , at a givenDT,
r 1(T)5r 2(T), i.e., w51. Thus, formula~32! determines
the magnitude of the external electric fieldEe that renders
concentrations of both phases equal. Note that Eq.~32! im-
plies that whenDT,0, Ṽ(k),0 andk,1. Thus, a domain
where concentrations of both phases are equal is locate
the regionDT,0 when k,1, and in the regionDT.0
whenk.1. Consider a case withk,1 andDT,0. Hereaf-
ter, the amplitude of the external field is normalized byEe so
that E0

25x2Ee
2. Using the latter relation and Eq.~32! rather

than Eqs.~21! and~23!, we arrive at the following formulas

r 2~T!5
r 0

12x2A
, r 1~T!5

r 0

sS Ax2

ts
21D , ~33!

where r 0522av2T0 /(l0DT) is a radius of the critical
nucleus of the low temperature phase without the exte
electric field and

s5v2 /v1 , t5
112k

k~k12!
, A5

t~11s!

11t
. ~34!

The magnitudes of parametersA, s, andt are determined
by the parameters of phases. Thus, Eqs.~32! and~33! deter-
mine the range of the external electric fieldE0 where both
phases are metastable. This range of the external ele
field can be found from the conditions that the sizes of
1-5
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YU. DOLINSKY AND T. ELPERIN PHYSICAL REVIEW E68, 026101 ~2003!
critical nuclei of both phases are positive, i.e.,r 2(T).0 and
r 1(T).0. The latter conditions yield

1/A.E0
2/Ee

2.ts/A. ~35!

The existence of the range of the external electric field~35!
requires the validity of the conditiong5ts,1, which was
found before.

In the caseDT.0, the sizes of the critical nuclei ar
normalized by the size of the critical nucleus without t
external electric fieldr 0 , r 052av1T0 /(l0DT) @compare
with r 0 in Eq. ~33!#. Then, using the same arguments allo
us to determine a condition for the metastability of bo
phasesk.1, g5ts.1, which was determined above.

Now we determine the dependence of the ratio of
concentrations of phasesw5x1(`)/x2(`) in the vicinity of
w51 upon the magnitude of the external electric field. F
mulas for the sizes of the nuclei can be rewritten as follo

r 2~T!5
r *

12
~x221!A

12A

, r 1~T!5
r *

11
~x221!A

A2st

,

~36!

wherer * is a critical radius of the nuclei forw51:

r * 5
r 0

12A
5

r 0t

A2ts
. ~37!

Note that a conditionr * .0, or ts,A,1, is a particular
case of the Eq.~35! at E5Ee .

Using Eq.~33!, we arrive at the following formula for the
ratio of concentrations of two phases:

ln~w!5
4par 0

2

3kT

@2jt1j2~12t!#~11t!

~12j!2~t1j!2~12A!2 , ~38!

wherej5(E0
22Ee

2)/Ee
2A/(12A). Equation~38! determines

the dependence of the ratio of concentrations of both ph
on the magnitude of the applied electric field and parame
of the problem.
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IV. DISCUSSION

In this study, we considered kinetics of phase formation
the domain of simultaneous metastability of both phases
the presence of the external electrostatic field. Although
existence of the domain of simultaneous metastability
both phases was demonstrated in the case of phase tr
tions in current-carrying conductors~see Refs.@7,8,11#!, the
kinetics of phase formation in this domain was not analyz
before.

The main result that was obtained in this study is that
demonstrated the feasibility to control concentrations
phases in the system by varying the amplitude of the exte
electrostatic field.

Concerning the experimental observation of the kinet
of phase formation in the external electrostatic field, it m
be noted that the main obstacle for observation of the ab
discussed phenomena is the relatively small magnitude
electric field causing a breakdown. It is feasible to obse
these effects when either a latent heat of phase transitio
small or a difference of the specific volumes of two phase
small. One very essential factor which is not accounted fo
this study is the mechanical instability of the nuclei wi
respect to their elongation into a spheroid shape and rup
into smaller fragments@14#. The latter instability occurs in
the case of formation of droplets in a gaseous medium.
the other hand, in this study, we suggested a general
proach with the end to determine the minimum requireme
to the system where there exists a domain of simultane
metastability of both phases. The existence of such a dom
is of interest since in this domain, it is possible to chan
concentrations of phases by varying the amplitude of
external electric field.

These minimum requirements to the system imply that
response of the system to the external loading depends u
the phase state of the material and the work of nucleus
mation depends upon the magnitude of the external load
The similar situation occurs during phase transitions
current-carrying conductors, e.g., during surface melt
@15#.
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